Deposition of DNA rafts on cationic SAMs on silicon [100].

نویسندگان

  • Koshala Sarveswaran
  • Wenchuang Hu
  • Paul W Huber
  • Gary H Bernstein
  • Marya Lieberman
چکیده

We demonstrate a guided self-assembly approach to the fabrication of DNA nanostructures on silicon substrates. DNA oligonucleotides self-assemble into "rafts" 8 x 37 x 2 nm in size. The rafts bind to cationic SAMs on silicon wafers. Electron-beam lithography of a thin poly(methyl methacrylate) (PMMA) resist layer was used to define trenches, and (3-aminopropyl)triethoxysilane (APTES), a cationic SAM precursor, was deposited from aqueous solution onto the exposed silicon dioxide at the trench bottoms. The remaining PMMA can be cleanly stripped off with dichloromethane, leaving APTES layers 0.7-1.2 nm in thickness and 110 nm in width. DNA rafts bind selectively to the resulting APTES stripes. The coverage of DNA rafts on adjacent areas of silicon dioxide is 20 times lower than on the APTES stripes. The topographic features of the rafts, measured by AFM, are identical to those of rafts deposited on wide-area SAMs. Binding to the APTES stripes appears to be very strong as indicated by "jamming" of the rafts at a saturation coverage of 42% and the stability to repeated AFM scanning in air.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substrate-mediated delivery from self-assembled monolayers: effect of surface ionization, hydrophilicity, and patterning.

Gene transfer has many potential applications in basic and applied sciences. In vitro, DNA delivery can be enhanced by increasing the concentration of DNA in the cellular microenvironment through immobilization of DNA to a substrate that supports cell adhesion. Substrate-mediated delivery describes the immobilization of DNA, complexed with cationic lipids or polymers, to a biomaterial or substr...

متن کامل

Nanoscale patterning of self-assembled monolayers using DNA nanostructure templates.

We describe a method to pattern arbitrary-shaped silane self-assembled monolayers (SAMs) with nm scale resolution using DNA nanostructures as templates. The DNA nanostructures assembled on a silicon substrate act as a soft-mask to negatively pattern SAMs. Mixed SAMs can be prepared by back filling the negative tone patterns with a different silane.

متن کامل

Self-assembly of octadecyltrichlorosilane monolayers on silicon-based substrates by chemical vapor deposition

Increasingly, organosilane self-assembled monolayers (SAMs) are used tomodify the surfaces of silicon-based sensors and atomic force microscope (AFM) probes. Organosilane SAMs are preferred due to their fast and easy preparation, stability, and applicability to a wide range of substrates. The traditional dip coating method from solution often yields ill-defined particulate aggregates on the two...

متن کامل

Cell patterning using molecular vapor deposition of self-assembled monolayers and lift-off technique.

This paper reports a precise, live cell-patterning method by means of patterning a silicon or glass substrate with alternating cytophilic and cytophobic self-assembled monolayers (SAMs) deposited via molecular vapor deposition. Specifically, a stack of hydrophobic heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane SAMs and a silicon oxide adhesion layer were patterned on the substrate surfa...

متن کامل

Directed growth of poly(isobenzofuran) films by chemical vapor deposition on patterned self-assembled monolayers as templates.

This paper describes a method to direct the formation of microstructures of poly(isobenzofuran) (PIBF) by chemical vapor deposition (CVD) on chemically patterned, reactive, self-assembled monolayers (SAMs) prepared on gold substrates. We examined the growth dependence of PIBF by deposition onto several different SAMs each presenting different surface functional groups, including a carboxylic ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 22 26  شماره 

صفحات  -

تاریخ انتشار 2006